- Нахождение процентного отношения двух чисел
- История понятия
- Что такое процент
- Процентное соотношение двух чисел
- Примеры расчета процентов
- Процентная разница между числами
- Пример
- Заключение
- Процент
- Увеличение/Уменьшение процентного соотношения
- Калькулятор Процентов
- Примеры:
- Отношение чисел
- Свойства отношений
- Процентное отношение
- Пропорция
Нахождение процентного отношения двух чисел
Отношение двух любых чисел x и y – это их частное, то есть дробь вида x/y. Процентным соотношением таких чисел является частное, умноженное на 100.
История понятия
Процент происходит от латинского выражения «pro cento», которое в переводе означает «на сотню». В математике процент — это сотая часть числа. Выражение частей от целого было актуально еще в античные времена, когда люди впервые начали использовать дроби.
В Древнем Египте широкой популярностью пользовались так называемые египетские дроби, которые представляли собой сумму нескольких различных дробей, обязательно содержащих в числителе единицу. Например, выражение 13/84 египетские математики выразили бы в виде суммы 1/12 + 1/14.
Однако 1/100 — наиболее удобный способ выражать части числа.
Проценты зародились в Древнем Риме, задолго до возникновения арабской системы чисел. Многие бытовые вопросы, как то мера товаров или размер налога, определялись как сотая часть от целого.
В России такие вычисления были введены гораздо позже Петром Первым, ведь русская система мер использовала числа, не кратные сотне.
Проценты до сих пор активно используются в реальной жизни и занимают важное место во многих сферах деятельности.
Что такое процент
Итак, процент — это одна сотая часть чего либо. Если у нас есть 100 яблок, то 5 фруктов из них — это пять частей от сотни или 5 %. Если у нас есть 200 персиков, то 23 % от них означает 23 части по 2 фрукта каждая или 46 персиков.
Очевидно, что эти показатели можно выразить в виде обыкновенных дробей. В случае с яблоками мы получим дробь 5 / 100 = 5 %, а в ситуации с персиками — 46 / 200 = 23 %. Используя данное уравнение, мы можем найти процентное соотношение двух чисел.
И не только.
Процентное соотношение двух чисел
Процент — это соотношение двух чисел, переведенное в десятичную дробь и умноженное на 100. В математической записи это выглядит следующим образом:
m / n × 100 = p,
где m – размер части, n – размер целого, p – процент.
Зная два из трех параметров, мы можем легко определить третий. Наш калькулятор использует данное выражение для поиска процента, целого или части числа. Соответственно, в программе часть обозначена как числитель, целое — как знаменатель, а процент остается процентом. На практике это выглядит следующим образом.
Примеры расчета процентов
Допустим, у нас есть 200 кг сахара. Мы хотим узнать:
- сколько сахара необходимо отгрузить, если требуется поставить 37 % от исходной массы;
- 3 кг сахара просыпалось, и требуется указать процент потерянного товара.
Итак, в первой задаче нам уже известен процент p = 37, а также размер целой части n = 200. У нас есть знаменатель и процент, а требуется найти числитель. Для этого выбираем в меню калькулятора опцию «вычислить числитель» и вводим параметры процента и знаменателя. В ответе получаем 74 кг.
Во второй задаче у нас опять же есть значение целого (знаменатель, равный 200), а так же размер части (числитель, равный 3). Для решения задачи требуется определить процент. Для этого в меню программы выбираем «вычислить процент», вводим соответствующие значения и видим мгновенный результат в виде 2 %.
Есть и третья задача. Допустим, мы не знаем, сколько сахара было изначально, но хотим это выяснить. Нам известно, что 56 кг — это 18 % от первоначального объема. Теперь нам требуется найти целое или знаменатель. Выберем соответствующий пункт калькулятора и введем известные параметры, то есть процент и числитель. Таким образом, изначально на складе было 311 кг сахара.
Процентная разница между числами
Наш калькулятор также позволяет определить процентную разницу между числами. Для вычисления данного параметра используется простая формула:
(a − b) / (0,5 × (a + b)) × 100 %.
Если вам для решения практических задач требуется вычислить процентную разницу между двумя значениями, то достаточно выбрать необходимый пункт в меню калькулятора и рассчитать требуемый показатель.
Пример
Допустим, за первый месяц работы вы получили чистую прибыль в размере 500 $, а во втором — 650 $. Давайте узнаем, на сколько процентов изменился ваш доход за месяц.
Для этого выберите в меню программы тип калькулятора «разница в процентах» и введите заданные показатели прибыли. При этом неважно, в какую из ячеек вы вобьете числа, так как разница в любом случае будет одинакова.
В результате мы получим ответ — прибыль изменилась на 26 %. В нашем случае она увеличилась.
Заключение
Проценты занимают важное место в нашей жизни — расчет этих параметров необходим в практически любой деятельности человека: от продвижения сайтов до расчета технологических процессов. Используйте наши калькуляторы в своей деятельности — программы пригодятся вам как в учебе, так и на работе.
Источник: https://BBF.ru/calculators/107/
Процент
Процент (что означает “на сотню”) это сравнение с 100.
Символ процента %. Так, например, 5 процентов записывается как 5%.
Предположим, что в комнате 4 человека.
50% это половина – 2 человека.25% это четверть – 1 человек.0% это ничего – 0 человек.100% это целое – все 4 человека в комнате.
Если в комнату заходят ещё 4 человека, то их колличество становится 200%.
1% это $\frac{1}{100}$
Если всего есть 100 человек, то 1% из них это один человек.
Чтобы выразить математически число X как процент от Y вы делаете следующее:
$X : Y \times 100 = \frac{X}{Y} \times 100$
Пример: Сколько процентов от 160 составляет 80?
Решение:
$\frac{80}{160} \times 100 = 50\%$
Увеличение/Уменьшение процентного соотношения
Когда число увеличивается относительно другого числа, то величина увеличения представляется как:
Увеличение = Новое число – Старое число
Однако, когда число уменьшается относительно другого числа, то эту величину можно представить как:
Уменьшение = Старое число – Новое число
Увеличение или уменьшение числа всегда выражается на основании старого числа.
Поэтому:
%Увеличение = 100 ⋅ (Новое число – Старое число) ÷ Старое число
%Уменьшение = 100 ⋅ (Старое число – Новое число) ÷ Старое число
Например, у Вас было 80 почтовых марок и Вы начали в этом месяце собирать ещё пока общее количество почтовых марок достигло 120. Процентное увеличение числа марок, которые у Вас есть равно
$\frac{120 – 80}{80} \times 100 = 50\%$
Когда у Вас стало 120 марок, Вы и Ваш друг договорились обменять игру “Lego” на несколько из этих марок. Ваш друг взял несколько марок, которые ему понравились, и когда Вы подсчитали оставшиеся марки, то обнаружили, что у Вас осталось 100 марок. Процентное уменьшение числа марок может быть подсчитано как:
$\frac{120 – 100}{120} \times 100 = 16,67\%$
Калькулятор Процентов
Есть два способа, как процентные соотношения помогают в решении наших каждодневных проблем:
1. Мы сравниваем две разных величины, когда все величины соотносятся с одной и той же основной величиной равной 100. Чтобы объяснить это, давайте рассмотрим следующий пример:
Пример: Том открыл новую бакалейную лавку. За первый месяц он купил бакалеи за \$650 и продал за \$800, а во втором купил за \$800 и продал за \$1200. Надо рассчитать делает ли Том больше прибыли или нет.
Решение:
Напрямую из этих чисел мы не можем сказать растёт доход Тома или нет, потому что расходы и выручка каждый месяц разные. Для того, чтобы решить эту задачу, нам нужно соотнести все значения к фиксированной основной величине равной 100. Давайте выразим процентное соотношение его доходов к расходам в первый месяц:
(800 – 650) ÷ 650 ⋅ 100 = 23,08%
Это значит, что если Том тратил \$100, то он делал прибыль в размере 23.08 в первый месяц.
Теперь давайте применим тоже самое ко второму месяцу:
(1200 – 800) ÷ 800 ⋅ 100 = 50%
Так, во втором месяце, если Том тратил \$100, то его доход был \$50(потому что \$100⋅50% = \$100⋅50÷100=\$50). Теперь понятно,что доходы Тома растут.
2. Мы можем определять количество части большей величины, если известно процентное соотношение этой части. Чтобы объяснить это, давайте рассмотрим следующий пример:
Пример: Синди хочет купить 8 метров шланга для своего сада. Она пошла в магазин и обнаружила, что там есть катушка со шлангом длиной 30 метров. Однако, она заметила, что на катушке написано, что 60% уже продано. Она должна узнать хватит ли ей оставшегося шланга.
Решение:
В табличке сказано, что
$\frac{Продано\ длина}{Всего\ длина} \times 100 = 60\%$
$Продано\ длина = \frac{60 \times 30}{100} = 18м$
Поэтому остаток 30 – 18 = 12м, которого вполне достаточно Синди.
Примеры:
1. Райн любит собирать спортивные карточки с его любимыми игроками. У него есть 32 карточки с игроками бейсбола, 25 карточки с футболистами и 47 с баскетболистами. Каково процентное соотношение карточек каждого спорта в его коллекции?
Решение:
Общее количество карточек = 32 + 25 + 47 = 104
Процентное соотношение бейсбольных карточек = 32/104 x 100 = 30,8%
Процентное соотношение футбольных карточек = 25/104 x 100 = 24%
Процентное соотношение баскетбольных карточек = 47/104 x 100 = 45,2%
Обратите внимание, что если сложить все проценты, то получится 100%, что представляет общее количество карточек.
2. На уроке был математический тест. Тест состоял из 5 вопросов; за три из них давали по три 3 балла за каждый, а за осташиеся два – по четыре балла. Вам удалось правильно ответить на два вопроса по 3 балла и на один вопрос по 4 балла. Какое процентное соотношение баллов Вы получили за этот тест?
Решение:
Общее количество = 3×3 + 2×4 = 17 баллов
Полученные балы = 2×3 + 4 = 10 баллов
Процентное соотношение полученных баллов = 10/17 x 100 = 58,8%
3. Вы купили видео игру за \$40. Потом цены на эти игры подняли на 20%. Какова новая цена видео игры?
Решение:
Увеличение цены равно 40 x 20/100 = \$8
Новая цена равна 40 + 8 = \$48
Источник: https://www.math10.com/ru/algebra/procent.html
Отношение чисел
Для обозначения отношения чисел используется знак деления «:» либо черта дроби.
Общая форма записи отношения чисел: a : b или, соответственно, . В таких записях a – предыдущий член отношения, b – последующий. Обязательное условие для всякого отношения: .
Пример №1:
3:2
Здесь 3 и 4 – предыдущие члены отношений, 2 и 9 – последующие.
Свойства отношений
Примеры отношений, члены которых являются целыми числами, приведены выше (см. Пример №1).
Пример №2. Отношения, члены которого дробные числа:
0,6:4,08
Пример №3:
Деление членов отношения на одно и то же число называют сокращением отношения.
Это свойство нередко используется для перехода от нецелых членов отношения к целым, что более удобно для расчетов.
Пример №4. Имеется треугольник, длины сторон которого относятся как 3:4:5.
Пример №5. Даны 4 пропорциональных числа, которые относятся между собой как 1:2:4:5.
В задачах, в которых приведены такого рода отношения, обычно вводится коэффициент пропорциональности и, используя свойства объекта, для которого они приведены, и (или) данные из условия, по заданному отношению находят абсолютные значения величин для этого объекта. При этом под абсолютными величинами понимают величины, выраженные в конкретных единицах измерения – кг, км и так далее.
Процентное отношение
Процентное отношение основывается на обычном отношении, которое множат на 100. Процентное отношение показывает часть объекта (величины) в сравнении с его 100 частями, которые принимаются за целое.
Математическая запись:
Где a – часть целого, выраженная в единицах измерения, b – значение целого, выраженное в тех же единицах, z – количество процентов, которое составляет данная часть от целого.
Пример №6. На книжной полке 80 книг. Сколько процентов от этого количества составляют 36 книг?
Обозначим искомую величину через х. Тогда получаем:
Пример №7. Фермер посеял пшеницу на 2 га, что составляет 80 % от всех его посевных площадей. Какова общая посевная площадь, которой он располагает?
Обозначим искомую величину через х. Составим процентное отношение на основании данных задачи:
Нередко вместо понятия процентного отношения используют понятие долей. В этом случае целое абстрактно принимается за 1, а понятие процента не используется. Доля (часть) от данного целого в такой ситуации – это всегда будет величина, меньшая 1. Для определения доли (части) от целого используется обычное отношение:
Где b – часть от целого, c – величина целого, a – доля, которую b составляет от c.
Специальной единицы измерения доля не имеет и измеряется просто в единицах.
Пример №8. Какую долю тиража изданной книги удалось продать писателю, если тираж составляет 10 тысяч экземпляров, а приобретено было 6830 книг?
Обозначим искомую величину через х. Составим отношение и найдем х:
Переход от долей к процентам предельно прост: достаточно умножить долю на 100. Так, в предыдущем примере 0,683 по отношению к общему тиражу составит .
Пример №9. С 1 га планировалось собрать 40 тонн картофеля. Реальная урожайность составила 0,7 от планируемой. Сколько тонн картофеля собрали?
Обозначим искомую величину через х. Составим выражение для расчета реальной урожайности и найдем х:
Пропорция
Пример №9. Примеры конкретных пропорций:
При решении практических задач с использованием отношений в виде пропорции чаще всего от деления переходят к умножению ее членов. Для этого используют основное ее свойство.
Основное свойство пропорции: произведение ее крайних членов равно произведению средних. Математически это свойство записывается так:
Пример №10.
Если провести дальнейшие вычисления, то в итоге мы должны прийти к равенству чисел слева и справа. А именно:
Отсюда следует важная особенность: основное свойство применяют для проверки истинности составленной пропорции. Если в результате числовых преобразований получено верное равенство, то это означает, что исходные 4 числа действительно могут составить пропорцию.
Когда один из членов пропорции неизвестен и требуется найти его, то применяют правило: для вычисления неизвестного крайнего (среднего) члена перемножают средние (крайние) и делят полученное произведение на известный крайний (средний) член.
Математически это выражается так:
То есть для определения неизвестного члена перемножают пару соответствующих известных и делят их на тот известный член, который не имеет известной пары.
Пример №11. Дана пропорция:
Требуется найти х.
Пример 12. Дана пропорция:
Необходимо найти х.
Источник: http://spadilo.ru/otnoshenie-chisel/